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Applications of the Finite-Element Method to the
Problem of Heat Transfer in a Freezing Shaft Wall

FU LIANDI

.. INTRODUCTION

Artificial freezing has been widely used in the construction of trenches, tunnels, bridge open-
ings and other underground structures. The essential problems with this technique are the deter-
mrination of temperature change and the control of the freezing-thawing process in the develop-

ing frozen wall. The use of this technique is closely related to the engineering design, construc-
tion procedures, economic benefits and work safety.

In the area of Liang-Huai Coal Mine in China, the depth of the shaft is generally 300 to 700 m.
For each shaft, about 40 freeze pipes are placed symmetrically along the circumference of radius

R. The depth of the freeze pipe is usually identical to that of the shaft. The freeze pipes may
also be staggered along two concentric circles, called freeze-pipe-circles, with radii RI and R2 .
The coolant used for freezing is a brine solution with a temperature of approximately -30°C.
By circulating the cold brine in pipes and the subsequent heat extraction between the pipe walls

and soil, a frozen wall is thus formed. The process of frozen wall formation may be divided into
* four stages (Beijing Institute 1975).

In the first stage, which is ca/led precircumscribed circling, freezing progresses radially at each
* freeze pipe, and a thin frozen wall will appear around each freeze pipe. After a certain duration

that depends on the distance between every two adjacent freeze pipes and the specific flow con-

dition of cold brine, all the small frozen walls will be connected to each other, and a global,
* nearly circular frozen wall will be formed.

After the formation of the global wall in the first stage, the frozen wall will concurrently grow
inward and outward until its thickness and temperature reach desired values. This is called the

active freezing stage.
During the third stage, continuous freezing is necessary to maintain an optimum thickness and

temperature of the frozen wall while excavation and cement lining of the mine shaft are taking
place. In the last stage, the circulation of cold brine is stopped as soon as the shaft work is com-
pleted. This is called the natural recovery period. Of the four stages, the active freezing stage is
most important for predesigning. This paper will focus attention on this stage and try to calculate
the change in the size of the frozen wall with the finite-element method.

A number of numerical methods have been used for solving heat transfer problems with phase

change. The essential problem is to secure a solution for the moving boundary. The solution
methods are usually divided into two basic types. The first type is represented by using tradition-
al fixed mesh finite elements or finite differences where the phase front progresses through the
stationary mesh and is interpolated with temperature distributions. Latent heat is handled with

the methods of enthalpy or apparent heat capacity. In general, phase change occurs over a very
narrow temperature range where enthalpy is represented by a steep line and apparent heat capac-

* ity has a peak value (Fig. I O'Neill 1983). An artificially extended temperature range AT is
usually used to smooth the curves for both parameters. In practice, numerical results are sensi-
tive to the selection of AT, and any unreasonable value of AT will introduce physical distortion.
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O'Neill (1983) presented an approach for the
case of two-dimensional problems; with the ,
use of linear triangular elements, the effect
of latent heat was included in apparent heat H

capacity, which is theoretically infinite at a
discrete phase change temperature. Thus the
artificially extended temperature range AT /
is not needed. This approach has the advan-
tages of simplicity and efficiency. __

The second type of solution method in-
volves the use of a continuously deforming It
mesh, such that the phase boundary always I
ies on a particular numerical boundary. Be- dH I
cause of the distinct boundary between the
two phases, every element has its unique
physical properties. Recently, Lynch and
O'Neill (1981) and O'Neill and Lynch (1981) _ __ _-

developed a method where finite differences T, TV T2

in time are used and the mesh motion effects AT

appear as a velocity term in the governing ..
equation. This type of method is considered Figure 1. Enthalpy and apparent heat capac-
to be more flexible and accurate than the ity curves over a temperature range.
fixed mesh method and also capable of solv-
ing some special problems, e.g. the simulation of ice crystal growth and the process of icing of
flowing water in a pipe (Sullivan et al. 1985, Albert 1984, Albert and O'Neill 1985). In this
paper, both fixed and deforming mesh finite-element methods are used. In using the deforming
mesh finite-element method, an automatic mesh-generation technique, transfimite mappings
(Albert 1984) at each time step are adopted.

BASIC FINITE-ELEMENT FORMULAS

Description of problem
Figure 2 shows a cross section of a cylindrical shaft, where r is the excavation radius and R the

radius of freeze-pipe-circle. As is shown in the figure, neither the distance between adjacent pipes
nor between the pipes and the center is equal. Consequently, the thickness of the global frozen
wall is not uniform. During the active freezing stage, the global frozen wall will be advancing un-
evenly in both inward and outward directions.

The governing equation to be solved in. .
each phase is the classical heat conduction /"

equation: .1\/ /--

8T 4 \ o-
CLT-= V.- (KVT) + Q (1) R

\.. - _1 / 'S..

with the interface boundary condition

dt (KVT)f - (KVT) u  (2) Figure 2. Distribution of freeze pipes.
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where
T = temperature

t = time

C = volumetric heat capacity
K = heat conductivity
L = latent heat
s = position of phase boundary

Q = interior heat
f = frozen
u = unfrozen.

Finite-clement equation-fixed mesh '

Using the Galerkin finite-element method, we multiply eq 1 by a weighting function N i and
integrate over the whole domnain A:

L Ni [C T_ -v (KVI) -QJ dA =0. (3)

Integration of the second term by part, yields

f- r Ni K Tdt+ QN idA (4)

where r' indicates the boundary with normal direction n. Now let the temperature be approxi-
mated as

T ; T, (t)Nj~xy). (5)

j=1

Here N, stands for .the interpolating function, which is chosen to be the same as the weighting K
function N1 .

Substituting eq 5 in eq 4 gives

dtf CNiN dA + Tj VN i . KVNdA N K LT dT +  QNidA = 0. (6)
di~~~~ ~~~ Jad~f nK-y =0 (6

A 1 A fQN

Discarding the term containing the integration of boundary heat flux and writing eq 6 in matrix
notation, it becomes

[A] Il! + ,K] ITJ + JFJ =0. (7)

where

[A] = =fACV 1 dA
[AJ =  VNi . dA jd'

fA'

JF A =f QNLdA4.

The detailed derivation of IFJI is shown in Appendix A.

3
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A key problem remaining to be solved is the integration of the integral that contains heat
capacity C. To take into consideration the effect of latent heat L, O'Neill (1983) presented an
application of a 6 function by relating volumetric sensible heat cs and latent heat L as

C = c, + L6 (T - T ) (8)

where C is the volumetric apparent heat capacity. It should be noted that with the use of a 6 6

function, phase change will occur at a discrete temperature Tp.

Substituting eq 8 in eq 6, the first term gives

f c,NNdA +ALNNi6(T- Tp)dA. (9)

The second term in eq 9 occurs only in the elements which contain the Tp isotherm, a detailed
evaluation of which is shown in Appendix B. In the case of linear elements, K and c. may be
evaluated using the weighted area method.

Finite-element equation -deforming mesh

The Galerkin finite-element equation for deforming mesh takes the same form as eq 4:

L -T+VNiKvT dA- 3TnaKd+ QNidA =0. (10)

But due to the deforming of the mesh with time, the interpolating function N, is now a function
of the mesh as well as time t. In a Cartesian system, let

nT- I jtQ) N,(x, v, t) . 1
/=1

Substituting eq II into eq 10, aT/at will yield two terms and eq 10 becomes

r raa N dTj

JAKVNJ VNdA + CN - dA +- fA CN1NjdA

T'T fA a" d

Ni K -d-y+ QNidA 0. (12)

Lynch (1982) indicated that the value of aN/at is expressed in terms of V by

aNj
.- = - V. VN (13)

where V = (dxiidt)Oj, xi denotes the coordinates of nodes with respect to a fixed reference frame,
Oi is the inte:polating function and V is the mesh velocity. For the special case of linear triangular
elements, 41i = Ni.

Substituting eq 13 in eq 12 gives

4
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Tj KVNi VNidA -T fCN i V .VNdA +- CNiNjdA

an -dY+ A QNdA =O. (14)

[A IT 1l + [K]ITI + JFJ =0. (15)

Equations 15 and 7 are in the same form, but the difference between them is in the representation

of [K]. [K],in this case, is -

f.
[K] =f KVNj• VNidA A CN i V • VNJdA. (16)

The solution of the second term in eq 16 is showo in Appendix C.
Equations 14 and 15 are the basic finite-element equations. To specify the motion of the phase

front, two methods are used in this investigation.

Method 1
The following derivation appears as it was presented in Albert (1984). Equation 2 is the base

for calculating the motion of phase boundary nodes. Since eq 2 cannot be exactly satisfied at a

discretized boundary, Lynch (1982) proposed the use of a weaker integral form of eq 2:

f 2  ndy =f2 (f (f

whr jr fer '~ 2  (KVT), . nENdy -f 2 (A'VT). nENjdyt (17)

where -N = 1, ]refers to nodes on the phase boundary, n is the unit vector directed away from
the frozen zone, and the integration is over the phase boundary r 2. If we now consider each

boundary node !, eq 17 may be written

Ids ~[K T (K aT \
J nNd- -( K - , Njd-y (18)

dta apt

where lT/an is the temperature gradient normal to the local boundary and (ds/dt)i is the velocity of
node j with the unit vector ni. By using the characteristics of linear triangular elements and repre-

senting two adjacent sides of node! with length Q1 and 2, we have

f2 nNd- 1Q, n, + Q2 n2~f2

and

_(ds) - an apt (20)
J = MJ L n1 + Q2 mj • n2

The magnitude of V, may be evaluated from eq 20 if mj is specified. To circumvent this difficulty.
mj is assumed to be a weighted average of n, and n2

5
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21 n, + Q 2n. 2 ) .
m 'lml where m= RI + R2  (21)

J :

It should be noted that the direction of mI can be chosen at one's convenience; consequently the
magnitude of Vi will be in the chosen direction (App. D demonstrates this procedure).

Method 2
In a later paper, Lynch (1983) pointed out the deficiency of method 1 and reported a complete

heat conservation method. The refined basic Galerkin equation is

A - NidA + KVT .VNdA + AQNidAFi (22)

where Fi includes two components, Fir' and Fir3, which are the integrals of heat flux over the ele-
ment and phase boundaries respectively, i.e.

F,=FUi + Fir,= KVT nNidy + f [(AV 4- (KV Tu- nNi d- (23)
r2

The node motion on the phase boundary was evaluated through the combination of eq 18, 22, and
23 to form a complete heat conservation equation:

f CLt N i dA +f KVT.- NjdA + QN idA

, K(a-) Nidy + L Vif nNidd( (24)

Lynch (1983) showed that the new phase boundary condition yields second-order accuracy and is
easy to implement without extra computational difficulties (App. E shows the computational pro-
cedure).

TRANSFINITE MAPPING TECHNIQUE %

In both of the deforming mesh methods used here, the interior mesh motion is governed by a
mesh generation technique. Albert (1984) reviewed such techniques and demonstrated the use-
fulness of transfinite mappings (Haber et al. 1981) in conjunction with moving meshes. The inter-
ior mesh motion in this work is based on the method presented by Albert (1984).

In this method, we introduce a concept of a lofting projector P which maps a true surface to an
approximate surface with a linear interpolatory constraint. In Figure 3, 411, P2 and , 2 are
four curvilinear boundaries of a plane region, and we have a bilinear projector:

P(u,) = (l-v)P (u) + V'2 (u) + (1 - u)% (i') + u12 (v)

-(1 -u) (1 -v)F(0,0)- (I -u)vF(0,I)

- 41F(il) - u(l - v)F(I,0)

O <u<l , O t'<l (25)

6



where u and v are normalized coordinates that change linearly along Vil, 02= and El, t2, respective-
ly. For a three-sided region containing curvilinear boundaries 4', and 1, the trilinear projector is

P(u,v,w) = _(v) + n (1-v) + (-!)n (w)

-w0 (o) - u ) = vn (o)

O~ul,0<v<l,0<w<l andu+Y+w= (26)

As before, u, v and w are normalized coordinates that change linearly along 4, [ and 77.
Applying eq 25 and 26, the boundaries of plane

region may be divided into any number of discrete 0("
points as well as unevenly located. The trilinear pro-
jector results in triangular elements directly, while
the bilinear projector forms unit squares that can be
transformed to triangular elements with diagonals. F(v )2
In principle, eq 25 and 26 may be applied to any
plane region of complex shape. This is done by di-
viding the whole region into a number of sub-regions.
On occasion, it is more convenient to use bilinear and
trilinear projectors to deal with three- and four-sided (0.0) (1.0)

regions respectively. Albert (1984) discusses the use
of these projectors and provides guidance on situa-o I( .0)
tions where they may fall. ,

At the end of each time step, a new mesh is gener- .~ Q)
ated with reference to the new phase front and other
boundaries, and which forms the basis of the compu- (V
tation for the next time step.

COMPUTATIONS AND CONCLUSIONS
(0.0, I). -

In this investigation, only a quarter of a circular (110.o0--)_" o
region with ten freeze-pipes is modeled. The physi-
cal parameters used here are obtained from the F~owe 3. Mesh generation with trans-

* Panji-3 Dong Feng Shaft of the Liang-Huai Coal finite napping&.
Mine in eastern China (Table 1).

The two straight boundaries of the computational region are specified to be zero-flux boundary
conditions. In deforming mesh approach, the outer boundary nodes are kept at a constant temper-
ature and moved outward at each time step. The extent of this movement is always twice that of
the phase boundary.

Three programs were used: FEFIX performs the fixed mesh finite-element calculations as pre-
sented by O'Neill, MOVGR uses the moving mesh with transfinite mappings as presented by Al-
bert (1984), and MOVHE incorporates the improvement over Albert's method suggested by
Lynch. The flow charts of the programs are shown in Appendix F. For FEFIX, MOVHE and
MOVGR, there are 42, 20 and 13 time steps adapted to simulate a period of 330 days. The pro-
gram MOVGR iterates once on the location of phase front for each time step. In all the three
programs, the parameter for implicitness in time 0 is equal to 1.0; i.e. it is fully implicit.

7
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Table 1. Parameters used in calculations.

Initial temperature, T, = 15°C
Boundary temperature, Tb = 15°C
Phase change temperature, Tp = 0°C
f-at conductivity, Ku = 1.00kcal/m. hr. °C

Kf = 1.50kcal/m. hr. °C
Hieat capacity, C, = 710 kcaVn - °C

Cf = 560kcal/m .C
Latent heat, L = 80. D(W-W.)
Dry density, D = 1360 kgjm
Relative water content, W = 26.5%
Relative unfrozen water content, Wu = 5%
Heat flux on pipe wall, Q = QT'atb, QT= 250 nd
Diameter of freeze-pipe, d = 0.127 m
Statistical coefficients, a = 4.08

b = -0.28

Figure 4 shows the structure of fixed mesh
and Figures 5, 6 and 7 illustrate the locations
of phase fronts at 90, 210 and 330 days re- 16
spectively. Similarly, for the deforming mesh
used with method I and method 2, the phase
boundaries for identical periods of 90, 210 y o0
and 330 days are shown in Figures 8, 9 and (M)

10 and Figures 11, 12 and 13, respectively.
Figure 14 shows the comparison of thickness

of inner and outer frozen wall as a function
of duration of operation among the computa-
tional methods. Figure 15 shows the growth
of total frozen wall thicknesses as a function
of time. The numerical results are also shown
in Table 2. All the results in Figures 14 and 4 ) 12 16

x (M)
15 and in Table 2 are average values of frozen
thickness at each time step. Figure 4. Fixed mesh and freeze-pipe distribu-

In practice, the fixed mesh method is found tion (FEFIX).

to be easier to program and takes much less CPU time than the deforming mesh method during the %
run. It is unfortunate that, because of the absence of experimental data and analytical solution,
the computed results can only be compared with those reported by Ding et al. (1982) using the
finite difference method and under the same physical conditions. The results of Ding have been
compared with the field results and have been proved to be in good agreement.

Table 2. Computed thicknesses of frozen wall.

Time (90 days) Time (150 days) Time (210 days) Time (2 70 days) Time (300 days)

Thickness (m) Thickness (m) Thickness (in) Thickness (m) Thickness (m)

Program Inner Outer Total Inner Outer Total Inner Outer Total Inner outer Total Inner Outer Total

FEFIX 1.26 1.12 2.38 1.98 1.67 3.65 2.71 2.13 4.84 3.37 2.52 5.89 3.80 2.74 6.54

MOVGR 1.36 1.20 2.56 2.05 1.78 3.83 2.69 2.28 4.97 3.31 2.74 6.05 3.62 2.95 6.57
MOVHE 1.34 1.19 2.53 2.04 1.75 3.79 2.70 2.23 4.93 3.34 2.66 6.00 3.65 2.86 6.51

FINITE
DIFFERENCE 1.50 1.36 2.86 2.10 1.83 3.93 2.70 2.28 4.98 3.30 2.65 5.95 3.60 2.82 6.42
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APPENDIX A: POINT HEAT SOURCES.
:-.

In eq 7 and 15, 
i

Ff QNidA (Al)..

For elements containing freeze-pipe, the heat source Q is treated as a point source and by introduc-
ing 45 functions (Segerlind 1984), eq 1 becomes V

f QNi6 (x -x,)6 (v -v0 )dxdv (A2)

where (x o ,y) is the coordinate of freeze-pipe. Thus we have

Ni(x°,' j ) -

I l I1 jxy)(3
Nk(Xo ,'o) I.o,

where i, /, k denote the three nodes of the element. By using eq A3, the effect of Q may be auto-
matically distributed to neighboring nodes, depending on the relative location from the point
( X o , Y o ) ., ..1
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, APPENDIX B: EVALUATION OF THE INTEGRAL INCLUDING LATENT HEAT (FIXED
MESH).

The integral including latent heat is 3'

-N- -(T -p) dxd-.(I " '

To integrate this, one of the spatial variables must be expressed in terms of T. In Figure 131, the :'
isotherm crosses the element and intersects with two of the sides at points I and 2. Let the new
coordinate system be (x', y'), where y' extends along the isotherm, and x' is perpendicular to the .-
isotherm. Equation I becomes :

f L N N6 (T - Tp) dx'dy . (112),\ -

where Nj and Nj are the functions of x' and y'. Thus all isotherms in the element are parallel to ..
y', T is only a function of x' and dx' is (dx'/dT) • dT. Therefore eq B2 can be written as .'

fdx

L NiN}5(T-Tp)j--dTdy' (113) '

where dx'/dT, the reciprocal of temperature gradient along x', is a constant. Applying the charac.-
ter of 6 function, eq B3 becomes .,

dx' NiNj IT= Td ' "
(3)"

PP

,

Euto 4 ie integral alcud ng lae the isotem sn ipo' ue qB eoe

x' Ni +NNilNbT TN)dx' (13)where

I--

dx' d/ 2= (836)
dT +

Ljy= (. Ti + +2N TN,+ Nk TN)N24 (136)

and



2 represents the length of isotherm, which can be evaluated geometrically. The values of Ni, Ni:2 ,

Nj, and NjA, can easily be specified because of the properties of interpolation functions, and in
* eq B6, i, j and k denote element nodes.
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APPENDIX C: SPECIFICATION OF [K] -DEFORMING MESH.

There are two terms in [K]. One of the terms is

" CNiVVNjdA (Cl)

where C is constant for any element at each time step, and V.VN1 may be written as V, 3NJlax,

aNj I bi bi bC
- =_ (C2)
ax , i i *'j

where Q denotes x and y, and ijand k denote three nodes. V, can be written as

2 V.i V.i

V= V V (03)

IT,~k Vyk

where Vxi, Vyi and so on can be calculated from node locations for the two meshes representing

the region at the beginning and end of the time step. Using eq C2 and C3 in eq Cl, we have

C V VjNiNjdA. (C4)
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APPENDIX D: SPECIFYING aT/an AND THE DIRECTION OF mj FOR METHOD 1.

When the radial direction of is specified, the solution of klmj • n, and £2mj - n2 may be
implemented geometrically. In Figure DI,

jn, = Imj" -In, IHcoso =d,/d2

* Qmj n, = I(x_,1 -x)y i - (y,1 -y)x+(xy H- xj-Yj)I/,(xj-x,) 2 + (yj-y,) 2  (DI)

k2m,-n2 can be evaluated in the same manner.

d2

Figure Dl. Specification of the motion of
node j on phase bounday.

aT/an is the temperature gradient normal to phase boundary. In eq 2 (in text), aT/8n contains
four terms referring to the adjacent two sides and to the frozen and unfrozen zones respectively.
Each may be specified with the following equation:

= x) + (7TyS (D2)
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APPENDIX E: PROCEDURES OF METHOD 2.

The complete heat conservation equation (eq 24) (in text) may be written in matrix notation:

1S1  2 [M]I TjI' fNj (El)
L Q 1ti + V2 n 2

where

[MI = [A] + OAt[k]

INI = QA] -(- o),t[k)j ITI"-+,,t[( - o IF +O + 0 IFI+'i I

The procedure for computing is as follows:

I, Form global equations as usual.

2, Save the equations of phase boundary nodes, i.e. [M] and N I

3, Solve the nodal temperature.

4, Compute the latent heat balance with the saved equations in step 2 and the new temperature

found in step 3.

21...
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-* APPENDIX F: EXPLANATION OF PROGRAMS.

(A) Name
FEFIX - Fixed mesh finite element method (flow chart in Figure FI). %
MOVGR - Deforming mesh with method 1 (flow chart in Figure F2).
MOVHE - Deforming mesh with method 2 (flow chart in Figure F3).

I Input ,nd,al
- ]information anlO

o parameters

Time loop

Cal GLO 9 Call MAT

C BAND Cl HS

ni .t [OVR. Figure Fl. Flow chart for FEFIX.

Input -,8lilStr

nFIotins th npormdn uruie GOMT HS, AI n AD

parameters

GLOB- Frmsglobl mtries ad isers bonday cnp iitial. ,

PHASE Specfies he loationof thoTrmitther. and

Time loop parameters Ili.

Call MOVE Time loop 5

~~iE~5HCall AREAS

~j~~RASCall GLOB Call MAT

I- Call MAT-1 Call BAND

~L~AN0Call MOVE

Figure F2 Flow chart for MO VGR. Fikure F3. Flow chart for MO VHE.

(B) FEFIX
FEFIX contains the main program and subroutines GLOB, MAT, PHASE, RATIO and BAND.

* GLOB - Forms global matrices and inserts boundary conditions.
MAT - Specifies the element matrices.
PHASE - Specifies the location of the TPisotherm.
RATIO - Specifies parameters K and C in the elements containing phase change.
BAND - Solves symmetric, banded and positive definite matrix equations and obtains nodal

temperatures.

23
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(C) MOVGR
MOVGR contains main prograra and subroutines MOVE, MESH, AREAS, GLOB, MAT and

BAND.

MOVE -- Specifies the motions of phase boundary nodes with method 1.
MESH - Generates a new mesh using the new locations of phase boundaries and transfinite

mappings. The velocities of nodal motion are calculated from the locations of new

and old meshes.
AREAS - Specifies new element areas at each time step.
GLOB - Forms global matrices and inserts boundary conditions.

MAT - Specifies the element matrices.
BAND - Solves banded and positive definite matrix equations and obtains nodal temperatures.

(D) MOVHE
MOVHE contains main program and subroutines MOVE, MESH, AREAS, GLOB, MAT and

BAND. In the subroutines, only MOVE and GLOB are different from those in MOVGR.

MOVE - Specifies the motions of phase boundary nodes with method 2, in which the saved

nodal equations are used.
GLOB - Forms global matrices, inserts boundary conditions and saves the nodal equations

on phase boundary.

24
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A facsimile catalog card in Library of Congress MARC
format is reproduced below.

Fu Liandi
Applications of the finite-element method to the problem

of heat transfer in a freezing shaft wall / by Fu Liandi.
Hanover, N.H.: Cold Regions Research and Engineering Lab-
oratory; Springfield, Va.: available from National Technical
Information Service, 1986.

iii, 31 p., illus.; 28 cm. (CRREL Report 86-8.)
Prepared for Office of the Chief of Engineers by Corps

of Engineers, U.S. Army Cold Regions Research and Engi-
neering Laboratory.
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